\qquad
\qquad

CHAPTER

Area of Polygons

Lesson 10.1 Area of Triangles

Name each figure and identify the pairs of parallel lines.

2.

\qquad is parallel to \qquad _.
\qquad is parallel to \qquad _.
3.

4.

\qquad is parallel to \qquad
\qquad is parallel to
6.

\qquad is parallel to \qquad
\qquad is parallel to \qquad

Name: \qquad Date: \qquad

Solve.

7. The length of a rectangle is 13 inches and its width is 9 inches. Find the area of the rectangle.

$$
\begin{aligned}
\text { Area } & =\ell \mathrm{w} \\
& =\square \\
& =\square
\end{aligned}
$$

The area of the rectangle is \qquad square inches.
8. The length of a rectangle is 20 meters and its width is 14 meters. Find the area of the rectangle.

$$
\begin{aligned}
\text { Area } & =\ell \mathrm{w} \\
& =\square \times \square \\
& =\square \mathrm{m}^{2}
\end{aligned}
$$

The area of the rectangle is \qquad square meters.
9. The side length of a square is 5 centimeters. Find the area of the square.

$$
\begin{aligned}
\text { Area } & =\ell^{2} \\
& =\square \times \square \\
& =\square \mathrm{cm}^{2}
\end{aligned}
$$

The area of the square is \qquad square centimeters.
10. The side length of a square is 11 feet. Find the area of the square.

$$
\begin{aligned}
\text { Area } & =\ell^{2} \\
& =\square \\
& =\square
\end{aligned}
$$

The area of the square is \qquad square feet.

Name: \qquad
\qquad

Find the area of each triangle.

Example

In triangle $A B C, \overline{C D}$ is perpendicular to $\overline{A B}$. Find the area of triangle $A B C$.

$$
\text { Base }=\underline{A B}=16 \text { in. }
$$

The height of the triangle is always perpendicular to the base.
Height $=$ \qquad in.

Area of triangle $=\frac{1}{2} \mathrm{bh}$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{16}{9} \cdot \frac{72}{} \text { in. }^{2}
\end{aligned}
$$

The area of triangle $A B C$ is \qquad 72 square inches.
11. In triangle $X Y Z, \overline{X W}$ is perpendicular to $\overline{Y Z}$. Find the area of triangle $X Y Z$.

Base $=$ \qquad $=$ \qquad cm

Height $=$ \qquad $=$ \qquad cm

Area of triangle $=\frac{1}{2} b h$

$$
=\frac{1}{2} .
$$

\qquad \cdot

$$
=
$$

\qquad cm^{2}

The area of triangle $X Y Z$ is \qquad square centimeters.

Name: \qquad
\qquad
12.

13.

Find the area of each triangle.

Example

In triangle $J K L, \overline{J H}$ is perpendicular to $\overline{K L}$. Find the area of triangle $J K L$.

Base $=\underline{K L}=\underline{6} \mathrm{ft}$
Height $=\underline{\mathrm{JH}}=\underline{2.8} \mathrm{ft}$
Area of triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \frac{6}{2.8} \\
& =8.4 \mathrm{ft}^{2}
\end{aligned}
$$

The area of triangle $J K L$ is \qquad 8.4 square feet.

Name: \qquad Date:
14. In triangle $R S T, \overline{R U}$ is perpendicular to $\overline{S T}$. Find the area of triangle $R S T$.

Base $=$ \qquad $=$ \qquad in.

Height $=$ \qquad $=$ \qquad in.

Area of triangle $=\frac{1}{2} b h$

$$
=\frac{1}{2} .
$$

\qquad .

$$
=
$$

\qquad in. ${ }^{2}$

The area of triangle RST is \qquad square inches.
15.

16.

\qquad
\qquad

Find the height of each triangle.

Example

The area of triangle DEF is 60 square centimeters. Find the height of the triangle.

Area of triangle $D E F=\frac{1}{2} b h$

$$
\begin{aligned}
\frac{60}{\frac{60}{60}} & =\frac{1}{2} \cdot \frac{16}{8} \cdot h \quad h \\
\frac{8}{7.5} & =h
\end{aligned}
$$

The height of triangle $D E F$ is \qquad 7.5 centimeters.
17. The area of triangle $S T U$ is 108 square inches. Find the height of the triangle.

$$
\begin{aligned}
\text { Area of triangle STU } & =\frac{1}{2} b h \\
- & =\frac{1}{2} \cdot \square \cdot h \\
- & =\square \cdot h \\
\square & =\square \div \square \\
\square & =h
\end{aligned}
$$

The height of triangle STU is \qquad inches.

Name: \qquad
\qquad
18. The area of triangle $P Q R$ is 300 square centimeters.

19. The area of triangle $X Y Z$ is 198 square feet.

Find the base of each triangle.

Example

The area of triangle CDE is 135 square centimeters. Find the base of the triangle.

Area of triangle $C D E=\frac{1}{2} \mathrm{bh}$

$$
\begin{aligned}
\frac{135}{135} & =\frac{1}{2} \cdot b \cdot \underline{18} \\
\frac{135}{135} \div \frac{1}{2} \cdot \frac{18}{9} & =\frac{9}{9} \cdot b \\
-\frac{15}{15} & =b
\end{aligned}
$$

Rearrange the terms using the commutative property.

The base of triangle CDE is \qquad 15 centimeters.
\qquad
20. The area of triangle $G H J$ is 286 square inches. Find the base of the triangle.

$$
\begin{aligned}
\text { Area of triangle } G H J & =\frac{1}{2} b h \\
- & =\frac{1}{2} \cdot b \cdot \square \\
- & =\frac{1}{2} \cdot \square \cdot b \\
- & =\square \cdot b \\
\square & =\square \\
\square & =b
\end{aligned}
$$

The base of triangle GHJ is \qquad inches.
21. The area of triangle $L M N$ is 72 square centimeters.

22. The area of triangle $V W X$ is 113.4 square meters.

20. $10 \mathrm{ft}=\underline{10} \div \underline{5}$

$$
=\underline{2} \text { grid squares }
$$

For point E to be in the park, the x-coordinate has to be $\underline{2}$ grid squares to the right of $\overline{A B}$.
$\underline{2}+\underline{2}=\underline{4}$ grid squares
So, point E is $\underline{4}$ grid squares to the right of the y-axis.
The x-coordinate of point E is $\underline{4} \times \underline{5}=\underline{20}$.
For point E to be in the park, the y-coordinate has to be 1 grid square below $\overline{A D}$.
$\underline{11}-\underline{1}=\underline{10}$ grid squares
So, point E is 10 grid squares above the x-axis.
The y-coordinate of point E is $\underline{10} \times \underline{5}=\underline{50}$.
The coordinates of point E are (20, 50).

21. $J(15,24), K(6,3), L(36,3), M(36,24)$
22. Sum of the parallel sides $=51$ meters Height of the trapezoid $=21$ meters
23. Area of the stage $=535.5$ square meters
24. 94.8 meters
25. $(21,15)$

Lesson 9.3

1.

2. It is a straight line graph.
3. From the graph, Shannon's wage is $\$ 28$.
4. From the graph, Shannon must work for $\underline{5}$ hours.
5. $w=8 \cdot(\underline{5}+\underline{3})$

$$
\begin{aligned}
& =8 \cdot \underline{8} \\
& =\$ \underline{64}
\end{aligned}
$$

Shannon earns \$64.
6. $h \geq 2.5$
7. \underline{w} is the dependent variable and \underline{h} is the independent variable.
8.

Time (t weeks)	0	1	2	3	4	5
Rental Fees (c dollars)	4	6	$\underline{8}$	$\underline{10}$	$\underline{12}$	$\underline{14}$

Rental Fees of a Second-hand Bookstore

9. 4 weeks
10. $\$ 22$
11. $t<3$

Chapter 10

Lesson 10.1

1. rectangle
$\overline{W Z}$ is parallel to $\overline{X Y}$.
$\overline{W X}$ is parallel to $\overline{Z Y}$.
2. square
$\overline{M Q}$ is parallel to $\overline{N P}$.
$\overline{\overline{M N}}$ is parallel to $\overline{\overline{Q P}}$.
3. trapezoid
$\overline{P S}$ is parallel to $\overline{Q R}$.
4. parallelogram
$\overline{A D}$ is parallel to $\overline{B C}$.
$\overline{A B}$ is parallel to $\overline{D C}$.
5. trapezoid
$\overline{D G}$ is parallel to $\overline{E F}$.
6. rhombus
$\overline{\overline{K J}}$ is parallel to $\overline{M N}$.
7. $\overline{\text { Area }}=\ell w$

$$
\begin{aligned}
& =\underline{13} \times \underline{9} \\
& =\underline{117} \mathrm{in} .^{2}
\end{aligned}
$$

The area of the rectangle is 117 square inches.
8. Area $=\ell w$

$$
\begin{aligned}
& =\underline{20} \times \underline{14} \\
& =\underline{280} \mathrm{~m}^{2}
\end{aligned}
$$

The area of the rectangle is $\underline{280}$ square meters.
9. Area $=\ell^{2}$

$$
\begin{aligned}
& =\underline{5} \times \underline{5} \\
& =\underline{25} \mathrm{~cm}^{2}
\end{aligned}
$$

The area of the square is $\underline{25}$ square centimeters.
10. Area $=\ell^{2}$

$$
\begin{aligned}
& =\underline{11} \times \underline{11} \\
& =\underline{121} \mathrm{ft}^{2}
\end{aligned}
$$

The area of the square is 121 square feet.
11. Base $=\underline{Y Z}=\underline{20} \mathrm{~cm}$

Height $=\underline{X W}=\underline{15} \mathrm{~cm}$
Area of triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \underline{20} \cdot \underline{15} \\
& =\underline{150} \mathrm{~cm}^{2}
\end{aligned}
$$

The area of triangle $X Y Z$
is $\underline{150}$ square centimeters.
12. 84 square feet
13. 130 square meters
14. Base $=\underline{S T}=\underline{8}$ in.

Height $=\underline{R U}=\underline{3.6} \mathrm{in}$.
Area of triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \cdot \underline{8} \cdot \underline{3.6} \\
& =\underline{14.4} \mathrm{in.}^{2}
\end{aligned}
$$

The area of triangle RST is 14.4 square inches.
15. 24 square feet
16. 37.8 square meters
17. Area of triangle $S T U=\frac{1}{2} b h$

$$
\begin{aligned}
\underline{108} & =\frac{1}{2} \cdot \underline{24} \cdot h \\
\underline{108} & =\underline{12} \cdot h \\
\underline{108} \div \underline{12} & =\underline{12} \cdot h \div \underline{12} \\
\underline{9} & =h
\end{aligned}
$$

The height of triangle STU is $\underline{9}$ inches.
18. 20 centimeters
19. 24 feet
20. Area of triangle $G H J=\frac{1}{2} b h$

$$
\begin{aligned}
\underline{286} & =\frac{1}{2} \cdot b \cdot \underline{26} \\
\underline{286} & =\frac{1}{2} \cdot \underline{26} \cdot b \\
\underline{286} & =\underline{13} \cdot h \\
\underline{286} \div \underline{13} & =\underline{13} \cdot h \div \underline{13} \\
\underline{22} & =h
\end{aligned}
$$

The base of triangle GHJ is $\underline{22}$ inches.
21. 16 centimeters
22. 14 meters

Lesson 10.2

1. Base $=\underline{G H}=\underline{20} \mathrm{in}$.

Height $=\underline{J K}=\underline{12} \mathrm{in}$.
Area of parallelogram $F G H J=b h$

$$
\begin{aligned}
& =\underline{20} \cdot \underline{12} \\
& =\underline{240} \mathrm{in}^{2}
\end{aligned}
$$

The area of parallelogram FGHJ
is $\underline{240}$ square inches.
2. 48 square meters
3. 28.5 square centimeters
4. Height $=\underline{L M}=\underline{20} \mathrm{in}$.

Sum of bases $=\underline{H L}+\underline{J K}$

$$
\begin{aligned}
& =\underline{15}+\underline{30} \\
& =\underline{45} \mathrm{in} .
\end{aligned}
$$

Area of trapezoid HJKL
$=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$=\frac{1}{2} \cdot \underline{20} \cdot \underline{45}$
$=\underline{450} \mathrm{in} .^{2}$
The area of trapezoid HJKL is $\underline{450}$ square inches.
5. 78 square centimeters
6. 162 square feet
7. Height $=\underline{G H}=\underline{5} \mathrm{in}$.

Sum of bases $=\underline{D G}+\underline{E F}$

$$
\begin{aligned}
& =\underline{5}+\underline{9} \\
& =\underline{14} \mathrm{in} .
\end{aligned}
$$

Area of trapezoid DEFG
$=\frac{1}{2} h\left(b_{1}+b_{2}\right)$
$=\frac{1}{2} \cdot \underline{5} \cdot \underline{14}$
$=\underline{35} \mathrm{in}^{2}{ }^{2}$
The area of trapezoid DEFG is $\underline{35}$ square inches.

